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NUMERICAL ASPECTS OF CALCULATION OF 
CONFINED SWIRLING FLOWS WITH INTERNAL 

RECIRCULATION 

F. DURST AND D. WENNERBERG* 
Lehrstuhl fur  Stromungsmechanik, Cauerstrasse 4 ,  D-8520 Erlangen. F.R.G. 

SUMMARY 
Predictions were performed for two different confined swirling flows with internal recirculation zones. The 
convection terms in the elliptic governing equations were discretized using three different finite differencing 
schemes : hybrid, quadratic upwind interpolation and skew upwind differencing. For each flow case, 
calculations were carried out with these schemes and successively refined grids were employed. For the 
turbulent flow case the k-& turbulence model was used. The predicted cases were a laminar swirling flow 
investigated by Bornstein and Escudier, and a turbulent low-swirl case studied by Roback and Johnson. In 
both cases an internal recirculation zone was present. The laminar case is well predicted when account is 
taken of the estimated radial velocity component at the chosen inlet plane. The quadratic upwind 
interpolation and skew upwind schemes predict the main features of the internal recirculation zone also with 
a coarse grid. The turbulent case is well predicted with the coarse as well as the finer grids, the skew upwind 
and quadratic upwind interpolation schemes yielding results very close to the measurements. It is concluded 
that the skew upwind scheme reaches grid independence slightly before the quadratic upwind scheme, both 
considerably earlier than the hybrid scheme. 

KEY WORDS Confined flow Swirling flow k--E Model predictions 

1. INTRODUCTION 

Swirling flows are often found in industrial flow applications when intense mixing between 
different streams is required. A typical example of an application is a swirl-stabilized flame, where 
an internal recirculating zone acts as a flame holder. Such flows are also of interest in cyclones, 
where particles are separated from a fluid owing to centrifugal forces imparted by the swirling 
motion of the flow. 

The appearance of an internal recirculation zone on or parallel to the axis of symmetry is 
typical for these types of flows. Extensive research has been done in order to investigate the basic 
mechanisms behind the formation of such zones. The works of Faler and 
L e i b ~ v i c h , ~ . ~  Leibovich’ and Escudier and Zehnder6 are all concerned with the mechanisms in 
the flow which cause these recirculation zones and classification of these in types and forms by 
flow characteristics. The appearance of these recirculation zones is a sign of the so-called vortex 
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breakdown phenomenon, in which the flow undergoes a change from one flow state to another’ 
owing to an instability of the rotating fluid motion. This change in the flow characteristic can be 
caused by a disturbance in the flow, which typically may be an expansion of the cross-sectional 
area of the flow channel. 

Modelling of swirling flows has been an area of high interest for many years and the subject of 
many papers. In a confined swirling flow the appearance of the internal recirculating zone causes 
the forward flow to divert outwards and around this zone. This implies that with the use of an 
orthogonal grid system (or rather a system that is not aligned with the streamlines) in calculations 
of such flows, the flow direction is inclined relative to the grid orientation and is therefore also 
sensitive to the numerical approximations used to discretize the flow equations. Accurate 
modelling is important for a correct prediction of the size and strength of the internal recircula- 
tion zone, and different combinations of grid fineness and discretization scheme may produce 
very different results, owing to what is known as numerical diffusion. 

More accurate predictions are always achievable by using finer grids. However, there are 
practical limits to grid refinements owing to the limited size of available computers and to 
limitations on computer time. For instance, an application to the calculation of swirl-stabilized 
pulverized fuel flames requires not only the fluid field to be computed but also the energy and 
different species equations, and the particle motion has to be calculated considering all the 
couplings between the equations, as done for instance by Wennerberg.’ In such a complex case 
the number of grid nodes applied will be restricted even when the most efficient and largest 
computers are employed. Hence, the use of more accurate differencing schemes will be an 
advantage if these can give more accurate results with fewer grid points and thus permit 
computations with the available computer power. 

The turbulence model used in swirling flow predictions will of course also have a strong 
influence on the results. However, in order to estimate the influence of different turbulence models, 
one has to ascertain that the numerical solution errors are minimized, i.e. the numerical grid used 
has to be fine enough and the differencing scheme as efficient as possible to yield reliable results. 

Comparisons of different finite differencing schemes in isothermal non-swirling recirculating 
flows were carried out by Leschziner,* Leschziner and R ~ d i , ~  Sharif and Busnaina’O and Pate1 
et al.,” among others. Syed et al.” did a thorough investigation on the efficiency of different 
differencing schemes in both two and three dimensions with applications to swirling combustor 
flows. Their conclusions were that higher-order schemes give better accuracy than hybrid or 
upwind schemes, but that the accuracy of the different higher-order schemes is dependent on the 
flow angle. Syed et al. recommended a bounded variant of skew upstream differencing. Sturgess 
and SyedI3 applied some of these investigated schemes to some swirling flow cases and pointed 
out the importance of numerical accuracy. Higher-order schemes (QUICK) have been used, for 
instance, by Nikjooy,I4 Rhode and Stowers” and Weber et ~ 1 . ’ ~  for calculation of swirling flows, 
but no direct comparisons of the influence of different differencing schemes or grid fineness were 
given. 

The objective of the work presented here was to compare different discretizing methods for the 
equations of motion applied to swirling flows with internal recirculation zones. Comparisons 
were made for two different cases where experimental data were also available. Calculations were 
performed with the above-mentioned differencing schemes and finer and coarser grids were 
employed for all schemes. In Section 2 the governing equations are presented as well as the 
different methods used for discretizing these into finite difference equations. In Section 3 the 
available experimental data to be used for the test calculations are discussed and in Section 4 
the results of the predictions are presented and discussed for the different cases. 
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Table I. Source term expressions for the independent variables in equation (l), and constants in the 
turbulence model 

a) Source term rerr Variable 

Mass 

Axial momentum 

Radial momentum 

Angular momentum 

Turbulent kinetic energy 

Dissipation 
rate of turbulence 
energy 

where 

0 - 1 

Perf 11 (reff %)+I 5 (reff E)-? 
dx ax r a r  ax ax 

a v pw2 
0 - ax ( reff :)+!A r dr ( reff r $) -2- dr 2reff ?+-- r r  Perf 

W Perf 

k Gk - P& 

G, = perf { 2 [ (g )’ + (E >’ + (:)’I + (2  >’ + [ r ( :) ]’ + (g + )’ } 
k Z  

Perf = c, P ; 

Constants {z9 :; :;2 I;, ;; 

2. CALCULATION PROCEDURES 

2.1. Governing equations for axisymrnetric swirling $ow 

can be expressed as (see e.g. Khalil”) 
The general form of the elliptic differential equations governing an axisymmetric swirling flow 

where x is the co-ordinate in the main flow direction, r is the radial co-ordinate, p is the fluid 
density and U and 17 are the velocity components in the x- and r-directions respectively. S ,  is the 
source term and ref, is the effective viscosity or diffusivity for the different variables @ as given in 
Table I. The standard procedure for converting this equation into a finite difference equation is to 
integrate it over a control volume and evaluate the respective fluid properties at control volume 
b~undaries.’~ The diffusion terms are naturally treated with central differencing, since the 
derivative is evaluated on the border between two adjacent control volumes, i.e. at point w, e, n or s 
in Figure 1. 
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For evaluation of the convective terms, the variable @ has to be estimated on the boundary of 
the control volume; see Figure 1. It is in this respect that the differencing schemes used here differ 
from one another. 

2.1.1. Hybrid diflerencing. The standard method for differencing the convection terms is the 
so-called hybrid differencing, where central differencing for the convection terms is used for cell 
Peclet numbers less than 2 and upwind differencing for higher Peclet numbers, i.e. the value is 
taken at point W, E, N or S in Figure 1, depending on the flow direction. As is well known, this 
practice always gives positive coefficients in the difference equations and is therefore always 
numerically stable. 

However, this scheme is known to be less accurate when the flow direction is not aligned with 
the orientations of the surface vectors of the control volumes. These inaccuracies are referred to as 
numerical diffusion, emanating from the fact that a rigorous error estimate for the discretized 
equations results in second-derivative, i.e. diffusion-like, terms. This error can be shown to be 
maximum when the flow angle relative to the control volume alignment is 45O.l’ 

2.1.2. Skew upwind diflerencing. The skew upwind differencing scheme was proposed by 
Raithby.’ Here the convected property on the boundary is interpolated over the cell face, taking 
the flow vector in the upstream direction into account. That implies that the SW, NW, SE and NE 
points are also introduced into the differencing scheme (see Figure l), which will decrease the 
effect of numerical diffusion as described above. Error estimates for different flow angles and 
different test cases are given by Syed et al.” 

For this scheme, however, the coefficients of the resultant solution matrix may become 
negative, which can lead to instabilities and convergence problems. This may be improved by 
using flux blending, i.e. the convective flux can be calculated as a weighted sum of the flux 
expressions from the upwind and skew upwind differencing schemes, as proposed by Syed et a/.’’ 
or Peric et a1.l’ By lowering the weighting factor, the flux is calculated with more weight from the 

Figure 1. Grid alignment and node points used in the differencing schemes 
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pure upwind scheme and therefore given more positive influence coefficients at the cost of more 
numerical diffusion. This procedure was used in the calculations presented here. The weighting 
factors have been taken as constants here for reasons of simplicity; various optimization schemes 
for local values of the weighting factors may also be derived.IZ 

2.1.3. QUICK diferencing scheme. The quadratic upstream interpolation differencing scheme 
was proposed by Leonard.” The basic principle behind this scheme is the utilization of three 
points in the upstream direction for evaluation of the cell face convected property, i.e. the points 
WW, EE, NN or SS are included (see Figure l), depending on the flow direction. A quadratic 
expression involving three points in a line is used for evaluating the cell face property. 

The influence coefficients may also become negative as for the skew upwind scheme. However, 
there are possibilities to manipulate the discretized equations in order to always achieve positive 
coefficients in the coefficient matrix, as done by Pollard and Siu.” Their formulation gives slower 
convergence though, since they put some of the dominating terms into the source term. In the 
present work another formulation, proposed by Shyy,” was used which gives a coefficient matrix 
that is more diagonally dominant than Pollard and Siu’s formulation. In addition to that, the 
flux-blending technique described above was also employed and fully implemented into the 
QUICK scheme. 

2.1.4. Solution procedure. A modified version of the well-known TEACH code with a stag- 
gered grid arrangement was used for all the predictions carried out in this study. The SIMPLE 
procedurez3 with proper relaxation factors” was used for the pressure-velocity coupling. For the 
solution of the resulting tridiagonal coefficient matrix system, Stone’s algorithmz4 was employed 
for the pressure correction equation and Stone’s algorithm or TDMA was used for the other 
equations. 

There were essentially no severe convergence problems encountered for the cases predicted 
here, neither for the skew upwind nor the QUICK differencing schemes. Only for the laminar flow 
case and for the QUICK scheme did the flux-blending weighting factors have to be lowered to 0.6 
for the fine grid cases to yield converged solutions. Relaxation factors were of the order of 0-5-0.6 
or higher. The iterations were continued until the residuals for velocities and mass conservation 
were smaller than 5 x also for the finer grids. The two higher-order schemes required more 
iterations to achieve convergence, and they required approximately 15%-20% and 3 5 % 4 %  
more computing time per iteration for QUICK and skew upwind respectively. 

2.2. Turbulence modelling 

The predictions for the turbulent flow case were performed with the so-called k-e model. This 
model is usually not considered to be fully suitable for turbulent flows with strong swirl. The 
objectives in this work, however, were not primarily to evaluate the turbulence model but rather 
to assess the influence of the numerical aspects of discretization and grid fineness on the 
prediction of swirling flows with internal recirculation. The results from the low-swirl case 
indicate that the k-& model yields sufficiently accurate predictions of the mean flow properties. 

The same differencing schemes were used for the k- and &-equations as for the three momentum 
equations. It may, however, be argued that in the regions where the flow is at a large angle to the 
grid system, i.e. at the outer edges of the recirculation zone, the turbulence production terms are 
probably large in comparison with convective transport and therefore numerical diffusion may be 
less important in the k- and &-equations. It was also noted that the same partly applies to the 
tangential velocity momentum equation, which sometimes also contains dominating source 
terms; see Table I. 
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3. DATA FOR MODEL EVALUATION 

Evaluation of the efficiency of the different differencing schemes may be studied by successive 
refinement of the grid. In general and for complex flow systems this approach may not be feasible, 
however, owing to limitations in computer storage and availability of computer time. However, 
for the achieved computational accuracy it is not only the total number of grid points utilized that 
is of interest but also their distribution over the computational domain. What matters in the end 
is of course the closeness of the predictions to the corresponding measurements. Here, assessment 
of computational accuracy was done by comparing the computational results for increasingly 
refined numerical grids as well as comparing the results with measurements. 

Sloan et aLZ5 carried out a review of experimental data on confined swirling flows. They 
reviewed 100 references on this type of flow for use as evaluation data for swirling flow prediction 
procedures. Their considerations included measurement quality and accuracy, availability of 
data, recency of study, etc. Of all the considered papers, only a small number, approximately 10, 
were considered by Sloan et al. to be sufficiently recent, accurate and available in suitable form to 
be compared with numerical predictions. 

On the basis of the work of Sloan et al., two different c a ~ e s ~ ~ * ~ ’  were chosen for use as test cases 
here. The flow characteristics of these two flows are summarized in Table I1 and the test section 
geometries are shown in Figure 2. The two cases are a laminar low-swirl flowz6 and a turbulent 
low-swirl flow.” In both cases there is an internal recirculation zone formed which forces the 
forward flow outwards towards the confinement walls and thus causes the flow to be at an angle 
to the symmetry axis. Both cases should therefore be sensitive to the effects of numerical diffusion. 

Inlet conditions were only partly available for the two cases. LDV measurements of the axial 
and tangential velocities, and in the case of the turbulent flow also the main strains in the three co- 
ordinate directions, were available for the cases considered here. However, in neither of the cases 
could the measured inlet conditions be used directly without modification to get the inlet 
conditions for the predictions. The necessary modifications for each case will be described below. 
One point that should be mentioned here is the importance of also measuring the radial velocity 
component at the inlet in swirling flows. Owing to the rotating motion imparted by the swirl 
element used, a radial velocity component will necessarily develop downstream of the swirler. 
This becomes apparent from looking at the geometry of the test sections in Figure 2. 

Test case 1 is a laminar swirling flow case measured by Bornstein and Escudier.26 Their flow 
geometry is shown in Figure 2(a). In their study the swirler consisted of radial inflow vanes from 
where the flow entered the flow tube. An insert acted as a step expansion, which provided the 
necessary disturbance to cause vortex breakdown and the creation of an internal recirculation 
zone. The case presented by Bornstein and Escudier represents a flow with a Reynolds number of 
612 and a swirl number of 0.34; see Table 11. Measurements of the axial and tangential velocity 
components were carried out by the authors at several stations downstream of the expansion step. 
The mass balance from the LDV measured profiles yielded flow rate results to & 5% within the 
given mass flow rate. 

The first measured profile was taken 7 mm downstream of the expansion step; see Figure 2(a). 
Therefore the inlet conditions had to be derived from data extrapolated upstream to the 
expansion plane. From the data in Reference 26 it is evident that there was a radial velocity 
component present in the flow already at the expansion plane. The flow exited from the radial 
vane swirler and developed in the short insert tube (83 mm), and owing to the swirling motion and 
the 90” bend, the pressure field imposed a radial velocity component on the flow. As will be seen 
from the results of the predictions for this case, this radial component is of utmost importance in 
yielding the final predicted flow results. For the present predictions the radial velocity component 
could be estimated from the streamfunction at the first measuring plane, constructed from 
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Radial vane swirler 

Step height H=7.5 mm 
/ 

D = 5 5  mm 

I_-- 

1 
Expansion plane, computational inlet. 

Figure 2(a). Geometry of Bornstein/Escudier test section 

, Step height H=31.5 mm 

Axial vane swirler / 

Primary inlet h -- ~ ~ 2 5  mm - - ~ _ _ -  - 

b Secondary inlet, 

I 
Test section, D=122 mm 

Figure 2(b). Geometry for Roback/Johnson case 

Table 11. Flow characteristics for the two test cases 

Reference 
Swirl Inlet 

number Re velocity (m s- ’) Fluid 

Bornstein and Escudierz6 0.34 612 0.02 Water 
Roback and Johnson” 0.38 47000 0.53J1.67 Water 

measured axial velocities, and then extrapolated upstream to the expansion plane where the 
calculations were started. The radial velocity component was estimated in this way to be of the 
order of 10%-15% of the axial velocity component. 

The second test case represents the flow in the test section of Figure 2(b) and is based on the 
measurements of Roback and Johnson2’ in a confined double-concentric jet with a sudden 
expansion; see Figure 2(b). In their study the swirler was an axial vane swirler placed in the 
secondary annular inlet and the swirl number was 0.38; see Table 11. Extensive measurements of 
mean quantities and main strains in the three co-ordinate directions and all three stress 
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components, performed with a two-component LDV system, were carried out by Roback and 
Johnson. The integrated mass flow from LDV-measured profiles was within 10%-15% of the 
given total mass flow rate. However, also for this study the first measuring plane was slightly 
downstream (5  mm) of the expansion plane and hence was sufficiently distant to have already 
caused an expansion of the flow. This can readily be deduced from the first measured velocity 
profile. However, enough measurements of the radial velocity are provided at this plane to deduce 
further flow information. The radial velocity components estimated in this way at the expansion 
plane are of the order of a few per cent of the axial velocity components for this flow case, i.e. of 
less importance for the development of the flow, in contrast to test case 1. This is readily 
explainable, since an axial vane swirler in an annulus should be a more favourable flow 
configuration in this respect than the swirl generator in test case 1. 

4. RESULTS AND DISCUSSION 

4.1. Test case 1, laminar flow, BornsteinlEscudier 

As already mentioned above, the calculations for test case 1 were started at the step expansion 
plane (see Figure 2(a)) with the axial and tangential velocity profiles from Bornstein and 
Escudier’s first measuring position, but extrapolated upstream by about 7 mm. In this way the 
inlet boundary conditions were obtained and the outlet boundary conditions were set sufficiently 
distant from the recirculation region in the flow. Calculations were performed with three different 
non-uniform grids: a coarse with 36 x 30 nodes and two finer grids with 70 x 58 and 138 x 114 
nodes. The finer grids were obtained by successively reducing the coarser grid spacings to half the 
size. 

Calculations were first performed with only the axial and tangential velocities given at the inlet, 
i.e. with the radial component equal to zero. This resulted in a flow without internal recirculation 
and with positive velocities at all axial locations near the centreline. This is also consistent with 
the results reported by Sloan et al.,25 who were also unable to predict flow reversal in the central 
parts of this flow. Sloan et al. also carried out predictions with a very fine grid (95 x 94) without 
seeing any flow reversal. Hence the present study is consistent with this finding. 

However, as discussed in Section 3 above, it is evident that the flow contains a radial velocity 
component already at the expansion plane. An estimate of the magnitude of this could be 
achieved from the streamfunction, calculated from the axial velocity component data at the first 
measuring positions in the Bornstein/Escudier experiment. This resulted in a distribution of the 
radial velocity component providing an overall magnitude of up to 15% of the axial velocity 
component. The extended data, with non-zero radial velocity components, were then used as inlet 
conditions for the following predictions. 

Figures 3(a) and 3(b) show the predicted flow field with the finest grid and calculated with the 
QUICK differencing scheme. In the lower half of Figure 3(b) the streamlines calculated from the 
Bornstein/Escudier measurements are shown. It is seen that the main features of the ‘vortex 
breakdown bubble’ are very well predicted. The stagnation point in the Bornstein/Escudier 
experiment was 20 mm downstream of the expansion plane, which is very well predicted here, as 
is the overall form of the recirculation zone. However, in the predictions the length of the toroidal 
part extends to approximately 70 mm downstream of the expansion plane whereas in the 
measurements it extended down to approximately 95 mm. 

Figure 3(c) shows the same comparison for the predictions carried out with the skew upwind 
differencing scheme, also with the finest grid. The stagnation point is shifted slightly upstream, 
otherwise the results are almost identical. 
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Figure 3(a). Velocity vectors; Bornstein/Escudier laminar flow, QUICK scheme, 138 x 114 grid 
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Figure 3(c). Streamlines; Bornstein/Escudier, skew upwind differencing, 138 x 114 grid 
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Figure 4(a). Axial (top) and tangential (bottom) velocity profiles; Bornstein/Escudier, QUICK scheme, 138 x 114 grid 
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Figure 4(b). Axial (top) and tangential (bottom) velocity profiles; Bornstein/Escudier, skew upwind scheme, 138 x 114 
grid 
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In Figures 4(a) and 4(b) the axial and tangential velocity profiles obtained by the QUICK and 
skew upwind differencing schemes respectively are compared with the measured profiles. The 
slopes of the profiles are well predicted, including the double humps of the tangential velocity 
profiles due to the upstream transport of tangential momentum. The profiles at the first axial 
location (7 mm) indicate too high an outward shift, probably owing to too high an estimated 
radial velocity at the expansion plane. However, it was felt that the only reasonable estimate of 
the radial velocity was to use the recalculated values from the measured streamfunction. 
Therefore these values were used for all calculations. 

In Figures 5 and 6 the predicted streamlines in the sensitive region of the flow are compared, i.e. 
in the toroidal recirculation zone, and results are given for the different discretization schemes 
and for different grid sizes. On the left-hand side of Figure 5 the predictions with the coarser grid 
(36 x 30) are shown in the following order: at the top the hybrid, then the skew upwind and at the 
bottom the QUICK differencing scheme. Both the skew upwind and QUICK schemes are also 
able to resolve the toroidal form of the recirculation zone with the coarse grid, in contrast to the 
hybrid scheme which fails to do so. The differences between the results of the various differencing 
schemes are smaller with the medium-size grid (70 x 58), the QUICK scheme being closest to the 
measured recirculation zone form. Figure 6 shows the same comparison between the finer grids 
(70 x 58 and 138 x 114). The differences diminish with grid fineness as expected. The QUICK 
scheme seems remarkably little influenced by the grid fineness, the results being almost identical 
for the finer and the coarse grids, and the prediction for the coarse grid is already close to the 
experimental data. 

In Figure 7 the relative differences in axial velocity between the predictions with coarse and 
finer grids for the different finite differencing schemes are shown. The finer-grid results were 
linearly interpolated back onto the next coarser grid with double the grid line spacing, and the 
difference between the two values normalized with inlet velocity. It can be seen from Figure 7 that 
the changes are essentially smaller for the QUICK and skew upwind schemes than for the hybrid 
scheme and that the differences are concentrated around the boundary regions between forward 
and backward flow. The hatched areas in Figures 7 and 8 indicate a difference of 20%, given the 
described normalization. It may be concluded that the skew upwind scheme approaches grid 
independence faster than the QUICK scheme in this case, as can be seen from Figure 7. This is 
due to the fact that for the predictions with the QUICK scheme in this case the flux-blending 
factors had to be lowered to 0.7 and 0.6 respectively for the finer grids from the value 0.85 used for 
the coarse-grid QUICK scheme computations. The influence of differencing is also felt more in 
the axial velocity calculations than in the tangential velocity calculations; see Figure 8, where 
corresponding data are shown for the tangential velocity. This can be explained by looking at the 
source terms in the respective equations in Table I. The magnitude of the source terms in the 
angular velocity equation is larger than the axial velocity equation source terms, which makes 
the solution less dependent on the approximations for the convection terms. 

4.2. Test case 2, RobacklJohnson 

Predictions of the experiments of Roback and Johnson2’ have been presented by several 
 author^.'^-'^,^^ Als o in this case it is natural to start calculations at the expansion plane, even 
though the first measuring position was taken 5 mm downstream of the expansion in Roback and 
Johnson’s experiment. To predict this flow, the measured axial and tangential velocity profiles at 
5 mm were slightly adjusted near the edges and used as inlet conditions at the expansion plane. 
Measurements of all three main strains were used to calculate inlet values for the turbulence 
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energy. Dissipation was estimated from the expression 

E = C,k''5/1,, 

with 

1, = 0.03 A y. 

The radial velocity was also set to zero at the secondary inlet, in agreement with the discussion in 
Section 3. Predictions were performed with three different non-uniform grids, consisting of 
40 x 39, 78 x 76 and 154 x 150 nodes, again providing successive doubling of the grid densities. 

An overview of the predicted flow is given in Figure 9(a), where velocity vectors are shown. A 
closed internal recirculation zone is formed in the centre of the flow, with an additional 

1 MM = 7.5E-02 M/S Ir/HJ 

0.00 4.00 8.00 12.00 16.00 
I x /H l  

Figure 9(a). Velocity vectors; RobacklJohnson, QUICK scheme, 154 x 150 grid 

I I I I 1 I I 1 I 
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Figure 9(b). Streamlines; Roback/Johnson, QUICK differencing, 154 x 150 grid 
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Figure 9(c). Streamlines; Roback/Johnson, skew upwind differencing, 154 x 150 grid 
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recirculation zone at the corners downstream of the step (Figure 9(b)). This causes a flow 
diversion outwards with high gradients in between these two zones and streamlines inclined to 
the main flow direction (Figure 9(a)). Streamlines predicted with the QUICK scheme and the 
finest grid (top), and Roback and Johnson's measured (bottom) streamlines are compared in 
Figure 9(b). The recirculation zone is very well predicted in form and extension; only the primary 
jet penetration in the initial part is slightly underestimated. 

The prediction with the skew upwind differencing scheme for the same case results in almost 
identical conditions; see Figure 9(c). Comparisons of measured and predicted axial and tangen- 
tial velocity profiles and turbulence intensity are shown in Figure 10, with details of the first five 
profile positions given in Figure 11. The agreement with the experimental data is good for the 
velocities for all three differencing schemes (Figure 11). The only discrepancy is the developed 
shape of the tangential velocity profiles (Figure 10). In the predictions they tend to adjust towards 
a free vortex flow, whereas in the measurements it is a forced vortex type of flow. Of the other 
predictions for this flow, e.g. see References 12, 13, 15 and 25, only Nikjooy14 reports predicted 
profiles for the developed shape of the tangential velocity close to the experimental data; they 
were carried out with an algebraic and a Reynolds stress model. Nevertheless, it seems that the 
k--E model is able to predict the mean flow properties in this case with an accuracy sufficient for 
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Figure lO(a). Axial velocity profiles; Roback/Johnson, skew upwind scheme, 154 x 150 grid 
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Figure 10(b). Tangential velocity profiles; Roback/Johnson, skew upwind scheme, 154 x 150 grid 
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Figure lO(c). Turbulence intensity profiles; Roback/Johnson, skew upwind scheme, 154 x 150 grid 
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practical applications. The form of the predicted turbulence intensity profiles in the bottom panel 
of Figure 10 is essentially correct, but the level is too high. 

The influence of the different formulations of the convective terms and the influence of the 
nodalization are shown as comparisons of error estimates for axial and tangential velocities in 
Figures 12 and 13 respectively, calculated as in the laminar flow case. On the left-hand side are the 
comparisons of the coarser grids and on the right-hand side the finer grids. The panels are in 
order from top to bottom and provide results calculated with hybrid, QUICK and skew upwind 
differencing schemes respectively. As expected, the regions with larger relative differences are 
concentrated in the shear regions between the two recirculation zones and in the wall-jet region 
downstream, but also upstream of the wall reattachment point (Figure 12). The differences are 
markedly larger for the hybrid scheme than for the other two differencing schemes. In Figure 12 
the cross-hatched areas indicate relative differences larger than 25% and the hatched areas 10%. 
For the QUICK and skew upwind schemes, 10% error fields still exist at such relatively fine grids 
as 78 x 76 and 154 x 150; see the right side of Figure 12. Grid independence thus requires even 
finer grids, and for the hybrid scheme obviously much finer. The difference levels for the 
tangential velocity are essentially lower (normalized with an average tangential velocity calcu- 
lated via the swirl number); the hatched area indicates the 5% level in Figure 13. 

In the present computations the skew upwind scheme turned out to be the most efficient, for 
axial as well as tangential velocities. This can be expected, since the high-shear region between the 
recirculation zones is at an angle of approximately 45" with the co-ordinate system used. 
Evidently the source terms in the tangential veloctiy equation are important in this case, with a 
substantial radial velocity component (see Table I). 

5. CONCLUSIONS 

Flow predictions were performed of two different confined swirling flows with internal recircu- 
lation zones. The convection terms in the elliptic governing equations, equation (l), have been 
discretized using three different schemes: hybrid, quadratic upwind interpolation and skew 
upwind differencing. For each flow case, calculations were performed with these schemes using a 
coarse and two finer numerical grids. 

The predictions showed that the proper choice of inlet conditions is very important. In swirling 
flow the rotating motion of the flow forces a radial velocity component to be present in the flow 
already at the inlet plane, i.e. after the swirler. In order to have a complete set of data for 
predictions, this component should also be measured in all experimental studies of such flows. If it 
is not available, an estimate of this component has to be made from streamfunction calculations 
and has to be used as initial data. 

The laminar swirling flow of Bornstein and EscudieP was well predicted when account was 
taken of the estimated radial velocity component at the chosen inlet plane. The QUICK and skew 
upwind schemes also predicted the main features of the internal recirculation zone with the 
coarser grid. With the finest grid the QUICK and skew upwind schemes were very close to 
Bornstein and Escudier's measured velocity profiles. The skew upwind scheme approached grid 
independence faster than QUICK, since the flux-blending factors could also be kept at 1.0 with 
the finest grid. 

In the turbulent low-swirl flow of Roback and Johnson2' the mean flow properties, i.e. axial 
and tangential velocities, were very well predicted in almost all cases, also with the coarser grid 
used. However, a close look at the predicted profiles in the region where the forward flow is 
diverted around the central recirculation zone revealed that the finer grid and higher-order 
differencing schemes perform better in this region. In this test case the skew upwind scheme was 
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slightly better than the QUICK and hybrid schemes and also approached grid independence 
earlier. The hybrid scheme required a finer grid than the skew upwind and QUICK schemes to 
reach grid independence, in this case finer than 154 x 150. 

It is clear that extreme care must be taken when predicting swirling flows with internal 
recirculation zones. Fine grids had to be used together with differencing schemes that minimize 
the effects of numerical diffusion. From the results presented here, it can be concluded that the 
skew upwind scheme should be the best choice and reaches grid independence faster than the 
hybrid and QUICK schemes for these types of flows. For flows with lower swirl numbers, i.e. up 
to 0.5, the k--E model results in sufficiently good predictions of the mean flow properties, at least 
sufficient for many practical applications of the results. 
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